The Department of Chemical and Materials Engineering offers programs leading to the M.S. and Ph.D. degrees in Materials Science and Engineering, with research specialization in the following areas:

- Ceramics
- Electronic Materials
- Metals and Alloys
- Micro-Materials
- Nanomaterials
- Polymers and Composites
- Surfaces and Interfaces
- Thin Films

Admission Requirements

Admission to the M.S. and Ph.D. degree programs is on a competitive basis, and financial assistance is available through teaching and research assistantships, as well as a limited number of fellowships. Applicants should have a minimum grade point average of 3.0/4.0 on all undergraduate work. Persons with backgrounds in any physical science or engineering discipline are encouraged to apply, as each applicant's qualifications are reviewed individually. Minimum requirements for admission include a bachelor's degree and four semesters of university-level calculus, calculus-based physics, and chemistry. Please note that meeting the minimum requirements does not guarantee admission, as acceptance is on a competitive and space-available basis.

Master of Science

The master's degree is offered under Plan A (thesis option) and Plan B (non-thesis option). Candidates for the degree under Plan A must complete 24 credit hours of course work and submit and defend a thesis that demonstrates research ability. The required course work includes the materials science core (MSE 632, 635, 650, 781) as well as appropriate electives selected in consultation with the Director of Graduate Studies. In certain exceptional cases (as determined by the faculty), a non-thesis M.S. may be undertaken (Plan B). The non-thesis option requires 30 hours of course work that includes the materials science core, and is only available to those students with prior research or industrial experience. For both Plan A and Plan B, at least half of all graduate course work must be at the 600 level or above.

Doctor of Philosophy

The Ph.D. program offers broad training in materials science and engineering while providing options to suit the student's particular interests and designated area of specialization. The student must conduct original and significant research and must submit and defend a dissertation based on that research. Doctoral students complete the materials science core, and work with their doctoral advisory committee to develop a program of elective courses designed to address deficiencies and to enhance the specialization area of interest. In addition, students must demonstrate proficiency in a minor area selected from the fields of mathematics, physical sciences, or engineering.

In order to advance to candidacy, doctoral students must pass an oral qualifying examination that tests the candidate's knowledge in three fundamental areas of Materials Science and Engineering: Structure of Materials, Mechanical Behavior of Materials, and Thermodynamics of Materials. There is no language requirement for the M.S. or Ph.D. degrees in Materials Science and Engineering.
Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 401G</td>
<td>Metal And Alloys</td>
<td>3</td>
</tr>
<tr>
<td>MSE 402G</td>
<td>Electronic Materials And Processing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 403G</td>
<td>Ceramic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 404G</td>
<td>Polymeric Materials (Same As CME 404G)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 506</td>
<td>Mechanics Of Composite Materials (Same As ME 506)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 531</td>
<td>Powder Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>MSE 535</td>
<td>Mechanical Properties Of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 538</td>
<td>Metals Processing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 542</td>
<td>Extractive Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>MSE 554</td>
<td>Chemical And Physical Processing Of Polymer Systems</td>
<td>3</td>
</tr>
<tr>
<td>MSE 556</td>
<td>Introduction To Composite Materials (Same As CME/ME 556)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 561</td>
<td>Electric And Magnetic Properties Of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 569</td>
<td>Electronic Packaging Systems And Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>MSE 585</td>
<td>Materials Characterization Techniques</td>
<td>3</td>
</tr>
<tr>
<td>MSE 599</td>
<td>Topics In Materials Science And Engineering</td>
<td>1-4</td>
</tr>
<tr>
<td>MSE 607</td>
<td>Analysis Of Metal Cutting Processes (Same As ME/MFS 607)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 620</td>
<td>Computational Materials Science Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 622</td>
<td>Physics Of Polymers (Same As CME 622)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 632</td>
<td>Advanced Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MSE 635</td>
<td>Advanced Mechanical Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>MSE 636</td>
<td>Dislocation Theory</td>
<td>3</td>
</tr>
<tr>
<td>MSE 650</td>
<td>Advanced Materials Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MSE 661</td>
<td>Advanced Physical Metallurgy I</td>
<td>3</td>
</tr>
<tr>
<td>MSE 662</td>
<td>Advanced Physical Metallurgy II</td>
<td>3</td>
</tr>
<tr>
<td>MSE 663</td>
<td>Optoelectronic Devices</td>
<td>3</td>
</tr>
<tr>
<td>MSE 699</td>
<td>Advanced Topics In Materials Science And Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 748</td>
<td>Master's Thesis Research</td>
<td>0</td>
</tr>
<tr>
<td>MSE 749</td>
<td>Dissertation Research</td>
<td>0</td>
</tr>
<tr>
<td>MSE 767</td>
<td>Dissertation Residency Credit</td>
<td>2</td>
</tr>
<tr>
<td>MSE 768</td>
<td>Residence Credit For Master's Degree</td>
<td>1-6</td>
</tr>
<tr>
<td>MSE 769</td>
<td>Residence Credit For Doctor's Degree</td>
<td>0-12</td>
</tr>
<tr>
<td>MSE 771</td>
<td>Seminar</td>
<td>0</td>
</tr>
<tr>
<td>MSE 781</td>
<td>Special Problems, Literature And Laboratory</td>
<td>1-3</td>
</tr>
<tr>
<td>MSE 782</td>
<td>Special Problems, Literature And Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MSE 790</td>
<td>Research In Materials Science</td>
<td>3-9</td>
</tr>
</tbody>
</table>

Course Descriptions

MSE 506 MECHANICS OF COMPOSITE MATERIALS. (3)
A study of structural advantages of composite materials over conventional materials, considering high strength-to-weight and stiffness-to-weight ratios. Fiber reinforced, laminated and particulate materials are analyzed. Response of composite structures to static and dynamic loads, thermal and environmental effects, and failure criteria are studied. Prereq: EM 302, engineering standing or consent of instructor. (Same as EM/ME 506.)

MSE 531 POWDER METALLURGY. (3)
Study of the principles of powder metallurgy relating to alloys of unusual compositions, metal and nonmetal combinations, porous and laminated products, composite metals, and high-melting alloys. Prereq:
MSE 535 MECHANICAL PROPERTIES OF MATERIALS. (3)
Introductory elasticity and plasticity theory; crystallographic nature of slip and twinning; fracture. Prereq: MSE 201, EM 302 and engineering standing or consent of instructor.

MSE 538 METALS PROCESSING. (3)
Solidification of molten alloys; fundamentals of metal working; application of metal working theories to forging.

MSE 569 ELECTRONIC PACKAGING SYSTEMS AND MANUFACTURING PROCESSES. (3)
Study of packaging systems which interconnect, support, power, cool, protect, and maintain electronic components. The course will address systems at the chip, board, and product levels. Topics include design, properties, materials, manufacture, and performance of various packaging systems. Laboratory will provide familiarity with design software and production equipment and processes. Prereq: EE 211 or EE 305, EE 360 or MSE 402G, or consent of instructor. (Same as EE 569.)

MSE 585 MATERIALS CHARACTERIZATION TECHNIQUES. (3)
This course will present the fundamentals of x-ray and electron beam interactions with solid-state materials. Both elastic and inelastic interactions will be treated, with emphasis on elastic diffraction effects. Prereq: MSE 301 and Engineering standing, or graduate status or consent of instructor.

MSE 599 TOPICS IN MATERIALS SCIENCE AND ENGINEERING (Subtitle required). (1-4)
A detailed investigation of a topic of current significance in engineering and materials science such as: biomedical synthetics, electronic properties of materials, advances in metal working, history of materials technology, quantitative metallography. Theory of disclinations, scanning electron microscopy. May be repeated to a maximum of eight credits, but only four credits can be earned under the same title. A particular topic may be offered at most twice under the MSE 599 number. Prereq: Variable; given when topic identified.

PREREQUISITE FOR GRADUATE WORK: Students desiring to take any of the following courses should have a thorough working knowledge of chemistry, physics and mathematics.

MSE 601 INTRODUCTION TO MATERIALS SCIENCE AND ENGINEERING. (3)
The purpose of this course is to provide a general background in the field of materials science and engineering for graduate level students. Fundamental topics include chemical bonding in materials, crystal structure and defects, diffusion and phase diagrams. The mechanical, electrical and optical properties of materials will be discussed in the context of processing history and application. Important concepts such as anisotropic properties of materials and their tensor representation will be introduced. The course covers major materials systems (metals, ceramics, polymers, composites, and electronic materials) and offers examples of materials applications in a range of technical areas. Prereq: Graduate standing in chemical engineering or materials science and engineering, or consent of instructor.

MSE 607 ANALYSIS OF METAL CUTTING PROCESSES. (3)
Advanced study of metal cutting involving the mechanics of metal cutting including cutting forces, tool-wear/tool-life and temperature analysis, surface finish and integrity, chip control, machinability assessments and advances in cutting tool technology. Prereq: ME 505. (Same as ME/MFS 607).
MSE 620 COMPUTATIONAL MATERIALS SCIENCE ENGINEERING. (3)
The effective use of existing computer software in the area of materials science engineering. Use of
computers to model processes and examine and predict materials properties at the macroscopic and
atomistic level. Prereq: Graduate standing in physical sciences and engineering, strong background in
material properties and structure similar to the material covered in MSE 401G, MSE 403G, and MSE
404G, and some programming experience in C or FORTRAN; or consent of instructor.

MSE 632 ADVANCED MATERIALS SCIENCE. (3)
Classification of solids, atomic structure and bonding, relation of structure to properties, deformation
behavior and failure. Prereq: Consent of instructor.

MSE 635 ADVANCED MECHANICAL METALLURGY. (3)
Theory of dislocations in crystals and their role in strength, plasticity, work hardening and fracture of
crystalline solids. Prereq: Consent of instructor.

MSE 636 DISLOCATION THEORY. (3)
Fundamentals of elastic theory of dislocations and the kinematics of dislocation motion: straight
dislocations, curved dislocation, selfenergies, interactions with other crystal defects, dislocation
multiplication. Prereq: MSE 535 or EM 531 or equivalent.

MSE 650 ADVANCED MATERIALS THERMODYNAMICS. (3)
Study of reactions of materials with chemical environments. Introduction to irreversible thermodynamics.
Emphasis on current literature. Prereq: Consent of instructor.

MSE 663 OPTOELECTRONIC DEVICES. (3)
Theory and applications of photodetectors, solar cells, semiconductor lasers, light emitting diodes and
display devices, nanocrystalline structures and organic semiconductors applications in optoelectronic
devices. Prereq: EE 360 or MSE 402G, consent of instructor and/or graduate standing. (Same as EE 663.)

MSE 664 MULTIDISCIPLINARY SENSORS LABORATORY. (3)
A multidisciplinary laboratory course with laboratory experiences in areas related to sensors and
sensing architectures, typically including chemistry, chemical and materials engineering, and electrical
engineering. Lecture, 1 hour; laboratory, 2 hours. Prereq: One year of college chemistry, calculus and
physics. GS 660 or by consent of instructor. (Same as CHE/CME/EE 664.)

MSE 699 ADVANCED TOPICS IN MATERIALS SCIENCE AND ENGINEERING (Subtitle required.) (3)
A detailed investigation of an advanced topic of current significance in materials science and engineering
such as (1) nanometer materials, (2) structures of superconductors and (3) materials characterization under
high rates of deformation. May be repeated under different subtitles to a maximum of nine credits, but
only three credits can be earned under the same title. A particular topic may be offered at most twice under
the MSE 699 number. Prereq: Variable, given when topic is identified.

MSE 748 MASTER'S THESIS RESEARCH. (0)
Half-time to full-time work on thesis. May be repeated to a maximum of six semesters. Prereq: All course
work toward the degree must be completed.

MSE 749 DISSERTATION RESEARCH. (0)
Half-time to full-time work on dissertation. May be repeated to a maximum of six semesters. Prereq:
Registration for two full-time semesters of 769 residence credit following the successful completion of the
qualifying exams.
MSE 767 DISSERTATION RESIDENCY CREDIT. (2)
Residency credit for dissertation research after the qualifying examination. Students may register for this course in the semester of the qualifying examination. A minimum of two semesters are required as well as continuous enrollment (Fall and Spring) until the dissertation is completed and defended.

MSE 768 RESIDENCE CREDIT FOR THE MASTER'S DEGREE. (1-6)
May be repeated to a maximum of 12 hours.

MSE 769 RESIDENCE CREDIT FOR THE DOCTOR'S DEGREE. (0-12)
May be repeated indefinitely.

MSE 771 SEMINAR. (0)
Review of current literature in the field of metallurgical engineering and presentation of papers thereon. Presentation of talks on departmental research. Group and panel discussions. Required of all graduate students every semester. Lecture, one hour per week.

MSE 781 SPECIAL PROBLEMS, LITERATURE AND LABORATORY. (1-3)
Literature research and planning of research programs; shop problems and technical writing, including a term paper, are required. Consultation and lecture by appointment. May be repeated to a maximum of nine credits.

MSE 782 SPECIAL PROBLEMS, LITERATURE AND LABORATORY. (3)
A continuation of MSE 781. Laboratory, six hours; consultation and lecture by appointment. May be repeated to a maximum of nine credits.

MSE 790 RESEARCH IN MATERIALS SCIENCE. (3-9)
Active research (experiments, library work, theory) toward Ph.D. degree. May be repeated indefinitely.